Fine Regularity of Solutions of Elliptic Partial Differential Equations

Jan Maly, William P. Ziemer, "Fine Regularity of Solutions of Ellic Partial Differential Equations"
1997 | pages: 305 | ISBN: 0821803352 | DJVU | 2,5 mb

The primary objective of this book is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second-order ellic quasilinear equations in divergence form. The structure of these equations allows coefficients in certain $L^{p}$ spaces, and thus it is known from classical results that weak solutions are locally Holder continuous in the interior. Here it is shown that weak solutions are continuous at the boundary if and only if a Wiener-type condition is satisfied. This condition reduces to the celebrated Wiener criterion in the case of harmonic functions. The work that accompanies this analysis includes the ""fine"" analysis of Sobolev spaces and a development of the associated nonlinear potential theory. The term ""fine"" refers to a topology of $\mathbf R^{n}$ which is induced by the Wiener condition. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The regularity of the solution is given in terms involving the Wiener-type condition and the fine topology. The case of differential operators with a differentiable structure and $\mathcal C^{1,\alpha}$ obstacles is also developed. The book concludes with a chapter devoted to the existence theory, thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.
Download link:

Buy Premium From My Links To Support Me & Download with MaX SPeeD!

Alternate Link for Fine Regularity of Solutions of Elliptic Partial Differential Equations.rar When above links are dead

Hello Respective Visitor!

Please Login or Create a FREE Account to gain accesss to hidden contents.


Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.