Elliptic Operators and Lie Groups


Derek W. Robinson, "Ellic Operators and Lie Groups"
1991 | pages: 571 | ISBN: 0198535910 | DJVU | 4,4 mb

Ellic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of ellic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural noncommutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.
Download link:

Buy Premium From My Links To Support Me & Download with MaX SPeeD!

Alternate Link for Elliptic Operators and Lie Groups.rar When above links are dead

Hello Respective Visitor!

Please Login or Create a FREE Account to gain accesss to hidden contents.


Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.